3.371 \(\int \frac{(7+5 x^2)^5}{(4+3 x^2+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=219 \[ -\frac{130729 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ),\frac{1}{8}\right )}{12 \sqrt{2} \sqrt{x^4+3 x^2+4}}+625 \sqrt{x^4+3 x^2+4} x^3-\frac{220779 \sqrt{x^4+3 x^2+4} x}{28 \left (x^2+2\right )}+\frac{5000}{3} \sqrt{x^4+3 x^2+4} x+\frac{\left (45779 x^2+99493\right ) x}{28 \sqrt{x^4+3 x^2+4}}+\frac{220779 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{14 \sqrt{2} \sqrt{x^4+3 x^2+4}} \]

[Out]

(x*(99493 + 45779*x^2))/(28*Sqrt[4 + 3*x^2 + x^4]) + (5000*x*Sqrt[4 + 3*x^2 + x^4])/3 + 625*x^3*Sqrt[4 + 3*x^2
 + x^4] - (220779*x*Sqrt[4 + 3*x^2 + x^4])/(28*(2 + x^2)) + (220779*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)
^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/(14*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) - (130729*(2 + x^2)*Sqrt[(4 + 3*x^
2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(12*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.121085, antiderivative size = 219, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {1205, 1679, 1197, 1103, 1195} \[ 625 \sqrt{x^4+3 x^2+4} x^3-\frac{220779 \sqrt{x^4+3 x^2+4} x}{28 \left (x^2+2\right )}+\frac{5000}{3} \sqrt{x^4+3 x^2+4} x+\frac{\left (45779 x^2+99493\right ) x}{28 \sqrt{x^4+3 x^2+4}}-\frac{130729 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{12 \sqrt{2} \sqrt{x^4+3 x^2+4}}+\frac{220779 \left (x^2+2\right ) \sqrt{\frac{x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{14 \sqrt{2} \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)^5/(4 + 3*x^2 + x^4)^(3/2),x]

[Out]

(x*(99493 + 45779*x^2))/(28*Sqrt[4 + 3*x^2 + x^4]) + (5000*x*Sqrt[4 + 3*x^2 + x^4])/3 + 625*x^3*Sqrt[4 + 3*x^2
 + x^4] - (220779*x*Sqrt[4 + 3*x^2 + x^4])/(28*(2 + x^2)) + (220779*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)
^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/(14*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) - (130729*(2 + x^2)*Sqrt[(4 + 3*x^
2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(12*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

Rule 1205

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{f = Coeff[Polynom
ialRemainder[(d + e*x^2)^q, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x
^2 + c*x^4, x], x, 2]}, Simp[(x*(a + b*x^2 + c*x^4)^(p + 1)*(a*b*g - f*(b^2 - 2*a*c) - c*(b*f - 2*a*g)*x^2))/(
2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToS
um[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] + b^2*f*(2*p + 3) - 2*a*c
*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*
a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]

Rule 1679

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Expon[Pq, x^2], e = Coeff[Pq, x^2,
 Expon[Pq, x^2]]}, Simp[(e*x^(2*q - 3)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(2*q + 4*p + 1)), x] + Dist[1/(c*(2*q +
 4*p + 1)), Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*q + 4*p + 1)*Pq - a*e*(2*q - 3)*x^(2*q - 4) - b*e*(2*q
+ 2*p - 1)*x^(2*q - 2) - c*e*(2*q + 4*p + 1)*x^(2*q), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2]
&& Expon[Pq, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] &&  !LtQ[p, -1]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (7+5 x^2\right )^5}{\left (4+3 x^2+x^4\right )^{3/2}} \, dx &=\frac{x \left (99493+45779 x^2\right )}{28 \sqrt{4+3 x^2+x^4}}+\frac{1}{28} \int \frac{18156+269221 x^2+350000 x^4+87500 x^6}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{x \left (99493+45779 x^2\right )}{28 \sqrt{4+3 x^2+x^4}}+625 x^3 \sqrt{4+3 x^2+x^4}+\frac{1}{140} \int \frac{90780+296105 x^2+700000 x^4}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{x \left (99493+45779 x^2\right )}{28 \sqrt{4+3 x^2+x^4}}+\frac{5000}{3} x \sqrt{4+3 x^2+x^4}+625 x^3 \sqrt{4+3 x^2+x^4}+\frac{1}{420} \int \frac{-2527660-3311685 x^2}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{x \left (99493+45779 x^2\right )}{28 \sqrt{4+3 x^2+x^4}}+\frac{5000}{3} x \sqrt{4+3 x^2+x^4}+625 x^3 \sqrt{4+3 x^2+x^4}+\frac{220779}{14} \int \frac{1-\frac{x^2}{2}}{\sqrt{4+3 x^2+x^4}} \, dx-\frac{130729}{6} \int \frac{1}{\sqrt{4+3 x^2+x^4}} \, dx\\ &=\frac{x \left (99493+45779 x^2\right )}{28 \sqrt{4+3 x^2+x^4}}+\frac{5000}{3} x \sqrt{4+3 x^2+x^4}+625 x^3 \sqrt{4+3 x^2+x^4}-\frac{220779 x \sqrt{4+3 x^2+x^4}}{28 \left (2+x^2\right )}+\frac{220779 \left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{14 \sqrt{2} \sqrt{4+3 x^2+x^4}}-\frac{130729 \left (2+x^2\right ) \sqrt{\frac{4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )|\frac{1}{8}\right )}{12 \sqrt{2} \sqrt{4+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.520698, size = 339, normalized size = 1.55 \[ \frac{-\sqrt{2} \left (662337 \sqrt{7}+975947 i\right ) \sqrt{\frac{-2 i x^2+\sqrt{7}-3 i}{\sqrt{7}-3 i}} \sqrt{\frac{2 i x^2+\sqrt{7}+3 i}{\sqrt{7}+3 i}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{\sqrt{7}-3 i}} x\right ),\frac{-\sqrt{7}+3 i}{\sqrt{7}+3 i}\right )+4 \sqrt{-\frac{i}{\sqrt{7}-3 i}} x \left (52500 x^6+297500 x^4+767337 x^2+858479\right )+662337 \sqrt{2} \left (\sqrt{7}+3 i\right ) \sqrt{\frac{-2 i x^2+\sqrt{7}-3 i}{\sqrt{7}-3 i}} \sqrt{\frac{2 i x^2+\sqrt{7}+3 i}{\sqrt{7}+3 i}} E\left (i \sinh ^{-1}\left (\sqrt{-\frac{2 i}{-3 i+\sqrt{7}}} x\right )|\frac{3 i-\sqrt{7}}{3 i+\sqrt{7}}\right )}{336 \sqrt{-\frac{i}{\sqrt{7}-3 i}} \sqrt{x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(7 + 5*x^2)^5/(4 + 3*x^2 + x^4)^(3/2),x]

[Out]

(4*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(858479 + 767337*x^2 + 297500*x^4 + 52500*x^6) + 662337*Sqrt[2]*(3*I + Sqrt[7
])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*Ellip
ticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] - Sqrt[2]*(975947*I + 662337
*Sqrt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])
]*EllipticF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])])/(336*Sqrt[(-I)/(-3*I
 + Sqrt[7])]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.048, size = 379, normalized size = 1.7 \begin{align*} -6250\,{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}} \left ({\frac{31\,{x}^{3}}{14}}+{\frac{18\,x}{7}} \right ) }+625\,{x}^{3}\sqrt{{x}^{4}+3\,{x}^{2}+4}+{\frac{5000\,x}{3}\sqrt{{x}^{4}+3\,{x}^{2}+4}}-{\frac{505532}{21\,\sqrt{-6+2\,i\sqrt{7}}}\sqrt{1- \left ( -{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{3}{8}}-{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}+{\frac{1766232}{7\,\sqrt{-6+2\,i\sqrt{7}} \left ( i\sqrt{7}+3 \right ) }\sqrt{1- \left ( -{\frac{3}{8}}+{\frac{i}{8}}\sqrt{7} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{3}{8}}-{\frac{i}{8}}\sqrt{7} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-6+2\,i\sqrt{7}}}{4}},{\frac{\sqrt{2+6\,i\sqrt{7}}}{4}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}}-43750\,{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}} \left ( -{\frac{9\,{x}^{3}}{14}}+2/7\,x \right ) }-122500\,{\frac{-1/14\,{x}^{3}-6/7\,x}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}-171500\,{\frac{3/14\,{x}^{3}+4/7\,x}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}-120050\,{\frac{-1/7\,{x}^{3}-3/14\,x}{\sqrt{{x}^{4}+3\,{x}^{2}+4}}}-33614\,{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+4}} \left ({\frac{x}{56}}+{\frac{3\,{x}^{3}}{56}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)^5/(x^4+3*x^2+4)^(3/2),x)

[Out]

-6250*(31/14*x^3+18/7*x)/(x^4+3*x^2+4)^(1/2)+625*x^3*(x^4+3*x^2+4)^(1/2)+5000/3*x*(x^4+3*x^2+4)^(1/2)-505532/2
1/(-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(
1/2)*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))+1766232/7/(-6+2*I*7^(1/2))^(1/2)*(1-(-3
/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)/(I*7^(1/2)+3)*(EllipticF(1
/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/
2))^(1/2)))-43750*(-9/14*x^3+2/7*x)/(x^4+3*x^2+4)^(1/2)-122500*(-1/14*x^3-6/7*x)/(x^4+3*x^2+4)^(1/2)-171500*(3
/14*x^3+4/7*x)/(x^4+3*x^2+4)^(1/2)-120050*(-1/7*x^3-3/14*x)/(x^4+3*x^2+4)^(1/2)-33614*(1/56*x+3/56*x^3)/(x^4+3
*x^2+4)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x^{2} + 7\right )}^{5}}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^5/(x^4+3*x^2+4)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x^2 + 7)^5/(x^4 + 3*x^2 + 4)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (3125 \, x^{10} + 21875 \, x^{8} + 61250 \, x^{6} + 85750 \, x^{4} + 60025 \, x^{2} + 16807\right )} \sqrt{x^{4} + 3 \, x^{2} + 4}}{x^{8} + 6 \, x^{6} + 17 \, x^{4} + 24 \, x^{2} + 16}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^5/(x^4+3*x^2+4)^(3/2),x, algorithm="fricas")

[Out]

integral((3125*x^10 + 21875*x^8 + 61250*x^6 + 85750*x^4 + 60025*x^2 + 16807)*sqrt(x^4 + 3*x^2 + 4)/(x^8 + 6*x^
6 + 17*x^4 + 24*x^2 + 16), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (5 x^{2} + 7\right )^{5}}{\left (\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)**5/(x**4+3*x**2+4)**(3/2),x)

[Out]

Integral((5*x**2 + 7)**5/((x**2 - x + 2)*(x**2 + x + 2))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x^{2} + 7\right )}^{5}}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^5/(x^4+3*x^2+4)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x^2 + 7)^5/(x^4 + 3*x^2 + 4)^(3/2), x)